
january 2014 | vol. 57 | no. 1 | communications of the acm 61

Cloud computing has been pioneering the business
of renting computing resources in large data centers to
multiple (and possibly competing) tenants. The basic
enabling technology for the cloud is operating-system
virtualization such as Xen1 or VMWare, which allows
customers to multiplex virtual machines (VMs) on a

shared cluster of physical machines.
Each VM presents as a self-contained
computer, booting a standard operating-
system kernel and running unmodified
applications just as if it were executing
on a physical machine.

A key driver to the growth of cloud
computing in the early days was server
consolidation. Existing applications
were often installed on physical hosts
that were individually underutilized,
and virtualization made it feasible to
pack them onto fewer hosts without
requiring any modifications or code
recompilation. VMs are also managed
via software APIs rather than physical

actions. They can be centrally backed
up and migrated across different phys-
ical hosts without interrupting service.
Today commercial providers such as
Amazon and Rackspace maintain vast
data centers that host millions of VMs.
These cloud providers relieve their
customers of the burden of managing
data centers and achieve economies of
scale, thereby lowering costs.

While operating-system virtual-
ization is undeniably useful, it adds
yet another layer to an already highly
layered software stack now including:
support for old physical protocols (for
example, disk standards developed

Unikernels:
The Rise of the
Virtual Library
Operating System

doi:10.1145/2541883.2541895

 Article development led by
 queue.acm.org

What if all the software layers in a virtual
appliance were compiled within the same safe,
high-level language framework?

By Anil Madhavapeddy and David J. Scott

practice

62 communications of the acm | january 2014 | vol. 57 | no. 1

modular components that are flexible,
secure, and reusable in the style of a
library operating system. What would
the benefits be if all the software lay-
ers in an appliance could be compiled
within the same high-level language
framework instead of dynamically as-
sembling them on every boot? First,
some background information about
appliances, library operating systems,
and type-safe programming languages.

The shift to single-purpose appli-
ances. A typical VM running on the
cloud today contains a full operating-
system image: a kernel such as Linux or
Windows hosting a primary application
running in user space (for example,
MySQL or Apache), along with second-
ary services (for example, syslog or NTP)
running concurrently. The generic soft-
ware within each VM is initialized every
time the VM is booted by reading con-
figuration files from storage.

Despite containing many flexible
layers of software, most deployed VMs
ultimately perform a single function
such as acting as a database or Web
server. The shift toward single-purpose
VMs is a reflection of just how easy it
has become to deploy a new virtual
computer on demand. Even a decade
ago, it would have taken more time and
money to deploy a single (physical) ma-
chine instance, so the single machine
would need to run multiple end-user
applications and therefore be carefully
configured to isolate the constituent
services and users from each other.

The software layers that form a VM
have not yet caught up to this trend,
and this represents a real opportunity
for optimization—not only in terms
of performance by adapting the appli-
ance to its task, but also for improv-
ing security by eliminating redundant
functionality and reducing the attack
surface of services running on the pub-
lic cloud. Doing so statically is a chal-
lenge, however, because of the struc-
ture of existing operating systems.

Limitations of current operating
systems. The modern hypervisor pro-
vides a resource abstraction that can
be scaled dynamically—both verti-
cally by adding memory and cores,
and horizontally by spawning more
VMs. Many applications and operating
systems cannot fully utilize this capa-
bility since they were designed before
modern hypervisors came about (and

in the 1980s such as IDE); irrelevant
optimizations (for example, disk el-
evator algorithms on SSD drives);
backward-compatible interfaces (for
example, Posix); user-space processes
and threads (in addition to VMs on a
hypervisor); and managed-code run-
times (for example, OCaml, .NET, or
Java). All of these layers sit beneath the
application code. Are we really doomed
to adding new layers of indirection
and abstraction every few years, leav-
ing future generations of program-
mers to become virtual archaeologists
as they dig through hundreds of layers
of software emulation to debug even
the simplest applications?5,18

This problem has received a lot
of thought at the University of Cam-
bridge, both at the Computer Labora-
tory (where the Xen hypervisor originat-
ed in 2003) and within the Xen Project
(custodian of the hypervisor that now
powers the public cloud via companies
such as Amazon and Rackspace). The
solution—dubbed MirageOS—has its
ideas rooted in research concepts that
have been around for decades but are
only now viable to deploy at scale since
the availability of cloud-computing re-
sources has become more widespread.

The goal of MirageOS is to restruc-
ture entire VMs—including all ker-
nel and user-space code—into more

Figure 1. Software layers and a stand-alone kernel compilation.

Mirage Compiler

Hardware

Hypervisor

OS Kernel

User Processes

Language Runtime

Parallel Threads

Application Binary

Mirage Runtime

Hardware

Hypervisor

Application Code

Configuration Files
application source code
configuration files
hardware architecture
whole-system optimization

specialized
unikernel}

Figure 2. Logical workflow in MirageOS.

http

device
drivers

algorithms

application
source

SAT
solver

service
monitor

binary
repository

dns
dhcp

OCaml code
repositories

config
tree

compiler

full
source

dependency
analysis

module
application

http

openstack

Branch-consistent
source

Branch-consistent
binaries

Compute

Cloud

whole program
optimization

static type
checking

protocols

resolve
dependencies

git

git

xen
unikernel
outputs

Programmer

Compiler
config
files

linker

practice

january 2014 | vol. 57 | no. 1 | communications of the acm 63

the physical analogues such as mem-
ory hotplug were never ubiquitous in
commodity hardware). Often, exter-
nal application-level load balancers
are added to traditional applications
running in VMs in order to make the
service respond elastically by spawn-
ing new VMs when load increases.
Traditional systems, however, are not
optimized for size or boot time (Win-
dows might apply a number of patches
at boot time, for example), so the load
balancer must compensate by keep-
ing idle VMs around to deal with load
spikes, wasting resources and money.

Why couldn’t these problems with
operating systems simply be fixed?
Modern operating systems are in-
tended to remain resolutely general
purpose to solve problems for a wide
audience. For example, Linux runs on
an incredibly diverse set of platforms,
from low-power mobile devices to
high-end servers powering vast data
centers. Compromising this flexibility
simply to help one class of users im-
prove application performance would
not be acceptable.

On the other hand, a specialized
server appliance no longer requires
an OS to act as a resource multiplexer
since the hypervisor can do this at a
lower level. One obvious problem with
this approach is that most existing
code presumes the existence of large
but rather calcified interfaces such as
POSIX or the Win32 API. Another po-
tential problem is that conventional
operating systems provide services
such as a TCP/IP stack for communica-
tion and a file-system interface for stor-
ing persistent data: in our brave new
world, where would these come from?

The MirageOS architecture—
dubbed unikernels—is outlined in Fig-
ure 1. Unikernels are specialized OS
kernels that are written in a high-level
language and act as individual soft-
ware components. A full application
(or appliance) consists of a set of run-
ning unikernels working together as a
distributed system. MirageOS is based
on the OCaml (http://ocaml.org) lan-
guage and emits unikernels that run
on the Xen hypervisor. To explain how
it works, let’s look at a radical operat-
ing-system architecture from the 1990s
that was clearly ahead of its time.

Library operating system. This is not
the first time people have asked these

existential questions about operating
systems. Several research groups have
proposed operating-system designs
based on an architecture known as a
library operating system (or libOS). The
first such systems were Exokernel6 and
Nemesis10 in the late 1990s. In a libOS,
protection boundaries are pushed to
the lowest hardware layers, resulting
in: a set of libraries that implement
mechanisms, such as those needed to
drive hardware or talk network proto-
cols; and a set of policies that enforce
access control and isolation in the ap-
plication layer.

The libOS architecture has several
advantages over more conventional
designs. For applications where per-
formance—and especially predictable
performance—is required, a libOS
wins by allowing applications to ac-
cess hardware resources directly with-
out having to make repeated privilege
transitions to move data between user
space and kernel space. The libOS
does not have a central networking
service into which both high-priority
network packets (such as those from a
videoconference call) and low-priority
packets (such as from a background
file download) are forced to mix and
interfere. Instead, libOS applications
have entirely separate queues, and
packets mix together only when they
arrive at the network device.

The libOS architecture has two big
drawbacks. First, running multiple
applications side by side with strong
resource isolation is tricky (although
Nemesis did an admirable job of min-
imizing crosstalk between interactive
applications). Second, device drivers
must be rewritten to fit the new mod-
el. The fast-moving world of commod-
ity PC hardware meant that, no mat-
ter how many graduate students were
tasked to write drivers, any research
libOS prototype was doomed to be-
come obsolete in a few short years.
This approach worked only in the
real-time operating-system space (for
example, VxWorks) where hardware
support is narrower.

Happily, OS virtualization over-
comes these drawbacks on commod-
ity hardware. A modern hypervisor
provides VMs with CPU time and
strongly isolated virtual devices for
networking, block storage, USB, and
PCI bridges. A libOS running as a VM

The goal of
MirageOS is to
restructure entire
VMs—including
all kernel and
user-space code—
into more modular
components that
are flexible, secure,
and reusable in
the style of a library
operating system.

practice

64 communications of the acm | january 2014 | vol. 57 | no. 1

MirageOS aims to unify these di-
verse interfaces—both kernel and ap-
plication user spaces—into a single
high-level language framework. Some
of the benefits of modern program-
ming languages include:

˲˲ Static type checking. Compilers can
classify program variables and func-
tions into types and reject code where
a variable of one type is operated on
as if it were a different type. Static
type checking catches these errors at
compile time rather than runtime and
provides a flexible way for a systems
programmer to protect different parts
of a program from each other without
depending solely on hardware mecha-
nisms such as virtual memory pag-
ing. The most obvious benefit of type
checking is the resulting lack of memo-
ry errors such as buffer or integer over-
flows, which are still prevalent in the
CERT (Computer Emergency Readi-
ness Team) vulnerability database. A
more advanced use is capability-style
access control,19 which can be entirely
enforced in a static type system such as
ML’s, as long as the code all runs with-
in the same language runtime.

˲˲ Automatic memory management.
Runtime systems relieve programmers
of the burden of allocating and freeing
memory, while still permitting manual
management of buffers (for example,
for efficient I/O). Modern garbage col-
lectors are also designed to minimize
application interruptions via incre-
mental and generational collection,
thus permitting their use in high-per-
formance systems construction.7,11

˲˲ Modules. When the code base
grows, modules partition it into logical
components with well-defined inter-
faces gluing them together. Modules
help software development scale as
internal implementation details can
be abstracted and the scope of a single
source-code change can be restricted.
Some module systems, such as those
found in OCaml and Standard ML, are
statically resolved at compilation time
and are largely free of runtime costs.
The goal is to harness these module
systems to build whole systems, cross-
ing traditional kernel and user-space
boundaries in one program.

˲˲ Metaprogramming. If the runtime
configuration of a system is partially
understood at compile time, then a
compiler can optimize the program

needs to implement only drivers for
these virtual hardware devices and
can depend on the hypervisor to drive
the real physical hardware. Isolation
between libOS applications can be
achieved at low cost simply by using
the hypervisor to spawn a fresh VM for
each distinct application, leaving each
VM free to be extremely specialized to
its particular purpose. The hypervisor
layer imposes a much simpler, less
fine-grained policy than a convention-
al operating system, since it just pro-
vides a low-level interface consisting
of virtual CPUs and memory pages,
rather than the process and file-ori-
ented architecture found in conven-
tional operating systems.

Although OS virtualization has
made the libOS possible without
needing an army of device-driver writ-
ers, protocol libraries are still needed
to replace the services of a traditional
operating system. Modern kernels
are written in C, which excels at low-
level programs such as device drivers,
but lacks the abstraction facilities of
higher-level languages and demands
careful manual tracking of resources
such as memory buffers. As a result,
many applications contain memory-
handling bugs, which often manifest
as serious security vulnerabilities. Re-
searchers have done an admirable job
of porting both Windows and Linux to
a libOS model,16 but for us this provid-
ed the perfect excuse to explore a less
backward-compatible but more natu-
rally integrated high-level language
model. Figure 2 shows the logical work-
flow in MirageOS. Precise dependency
tracking from source code (both local
and global libraries) and configuration
files lets the full provenance of the de-
ployed kernel binaries be recorded in
immutable data stores, sufficient to
precisely recompile it on demand.

Stronger programming abstractions.
High-level languages are steadily gain-
ing ground in general application de-
velopment and are increasingly used
to glue components together via or-
chestration frameworks (for example,
Puppet and Chef). Unfortunately, all
this logic is typically scattered across
software components and is written
in several languages. As a result, it is
difficult to reason statically about the
whole system’s behavior just by analyz-
ing the source code.

Although OS
virtualization has
made the libOS
possible without
needing an army
of device-driver
writers, protocol
libraries are still
needed to replace
the services
of a traditional
operating system.

practice

january 2014 | vol. 57 | no. 1 | communications of the acm 65

much more than it would normally
be able to. Without knowledge of the
runtime configuration, the compiler’s
hands are tied, as the output program
must remain completely generic, just
in case. The goal here is to unify config-
uration and code at compilation time
and eliminate waste before deploying
to the public cloud.

Together, these features signifi-
cantly simplify the construction of
large-scale systems: managed memory
eliminates many resource leaks, type
inference results in more succinct
source code, static type checking veri-
fies that code matches some abstrac-
tion criteria at compilation time rather
than execution time, and module sys-
tems allow the manipulation of this
code at the scales demanded by a full
OS and application stack.

A Functional Prototype In OCaml
We started building the MirageOS
prototype in 2008 with the intention
of understanding how far we could
unify the programming models un-
derlying library operating systems
and cloud-service deployment. The
first design decision was to adopt the
principles behind functional program-
ming to construct the prototype. Func-
tional programming has an empha-
sis on supporting abstractions that
make it easier to track mutability in
programs, and previous research has
shown that this need not come at the
price of performance.11

The challenge was to identify the
correct modular abstractions to sup-
port the expression of an entire oper-
ating system and application software
stack in a single manageable struc-
ture. MirageOS has since grown into a
mature set of almost 100 open-source
libraries that implement a wide array
of functionality, and it is starting to be
integrated into commercial products
such as Citrix XenServer.17

Figure 2 illustrates MirageOS’s de-
sign. It grants the compiler a much
broader view of source-code dependen-
cies than a conventional cloud deploy-
ment cycle:

˲˲ All source-code dependencies of
the input application are explicitly
tracked, including all the libraries re-
quired to implement kernel function-
ality. MirageOS includes a build system
that internally uses a SAT solver (us-

ing the OPAM package manager, with
solvers from the Mancoosi project) to
search for compatible module imple-
mentations from a published online
package set. Any mismatches in inter-
faces are caught at compile time be-
cause of OCaml’s static type checking.

˲˲ The compiler can then output a
full stand-alone kernel instead of just
a Unix executable. These unikernels
are single-purpose libOS VMs that
perform only the task defined in their
application source and configuration
files, and they depend on the hypervi-
sor to provide resource multiplexing
and isolation. Even the bootloader,
which has to set up the virtual mem-
ory page tables and initialize the lan-
guage runtime, is written as a simple
library. Each application links to the
specific set of libraries it needs and
can glue them together in applica-
tion-specific ways.

˲˲ The specialized unikernels are
deployed on the public cloud. They
have a significantly smaller attack sur-
face than the conventional virtualized
equivalents and are more resource effi-
cient in terms of boot time, binary size,
and runtime performance.

Why OCaml? OCaml is the sole
base language for MirageOS for a few

key reasons. It is a full-fledged sys-
tems programming language with
a flexible programming model that
supports functional, imperative, and
object-oriented styles within a single,
ML-inspired type system. It also fea-
tures a portable single-threaded run-
time that makes it ideal for porting
to restricted environments such as
a barebones Xen VM. The compiler
heavily emphasizes static type check-
ing, and the resulting binaries are
fast native code with minimal run-
time type information. Principal type
inference allows type annotations to
be safely omitted, and the module
system is among the most powerful
in a general-purpose programming
language in terms of permitting flex-
ible and safe code reuse and refactor-
ing. Finally, there were several exam-
ples of large-scale uses of OCaml in
industry14 and within Xen itself,17 and
the positive results were encouraging
before embarking on the large mul-
tiyear project that MirageOS turned
out to be.

Modular operating-system librar-
ies. OCaml supports the definition
of module signatures (a collection of
data-type and function declarations)
that abstract the implementation of

Figure 3. A partial module graph for a static Web server.

XenBoot :
XEN

XenStore :
XS(XEN)

XenRing :
RING(XS)(EVENT)

XenEvtchn :
EVENT(XEN)

UnixTuntap :
NETIF(UNIX)

MirNet :
ETH(NETIF)

XenNetif :
NETIF(XEN)(RING)

MirTCP :
TCP(ETH)

UnixELF :
UNIX

Cohttp :
HTTP(TCP)

UnixSocket :
TCP(UNIX)

MyHomePage :
APP(HTTP)(...)

practice

66 communications of the acm | january 2014 | vol. 57 | no. 1

can recompile to switch away from us-
ing Unix sockets to the OCaml TCP/
IP stack shown by MirTCP in Figure
3. This still requires a Unix kernel
but only as a shell to deliver Ether-
net frames to the Web-server process
(which now incorporates an OCaml
TCP/IP stack as part of the applica-
tion). The last compilation strategy
drops the dependency on Unix entire-
ly and recompiles the MirNet mod-
ule to link directly to a Xen network
driver, which in turn pulls in all the
dependencies it needs to boot on Xen.
This progressive recompilation is key
to the usability of MirageOS, since we
can evolve from the tried-and-tested
Linux or FreeBSD functionality gradu-
ally but still end up with specialized
unikernels that can be deployed on
the public cloud. This modular op-
erating-system structure has led to
a number of other back ends being
implemented in a similar vein to Xen.
MirageOS now has experimental back
ends that implement a simulator in
NS3 (for large-scale functional test-
ing), a FreeBSD kernel module back
end, and even a JavaScript target by
using the js _ of _ ocaml compiler.
A natural consequence of this modu-
larity is that it is easier to write por-
table code that defines exactly what it
needs from a target platform, which is
increasingly difficult on modern oper-
ating systems with the lack of a mod-
ern equivalent of Posix (which has led
Linux, FreeBSD, Mac OS X, and Win-
dows to have numerous incompatible
APIs for high-performance services).

Configuration and state. Libraries
in MirageOS are designed in as func-
tional a style as possible: they are re-
entrant with explicit state handles,
which are in turn serializable so that
they can be reconstructed explicitly.
An application consists of a set of li-
braries plus some configuration code,
all linked together. The configuration
is structured as a tree roughly like a
file system, with subdirectories be-
ing parsed by each library to initialize
their own values (reminiscent of the
Plan 9 operating system). All of this is
connected by metaprogramming—an
OCaml program generates more OC-
aml code that is compiled until the
desired target is reached.

The metaprogramming extends
into storage as well. If an application

module structures (definitions of con-
crete data types and functions). Mod-
ules can be parameterized over sig-
natures, creating functors that define
operations across other data types.
(For more information about OC-
aml modules, functors, and objects,
see Real World OCaml, published by
O’Reilly and available at https://real-
worldocaml.org.) We applied the OC-
aml module system to breaking the
usually monolithic OS kernel func-
tionality into discrete units. This lets
programmers build code that can be
progressively specialized as it is be-
ing written, starting from a process
in a familiar Unix environment and
ending up with a specialized cloud
unikernel running on Xen.

Consider a simple example. Fig-
ure 3 shows a partial module graph
for a static Web server. Libraries are
a module graph that abstract over
operating-system functionality, and
the OPAM package manager solves
constraints over the target architec-
ture. The application MyHomePage
depends on a HTTP signature that
is provided by the Cohttp library.
Developers just starting out want to
explore their code interactively us-
ing a Unix-style development envi-
ronment. The Cohttp library needs
a TCP implementation to satisfy its
module signature, which can be pro-
vided by the UnixSocket library.

When the programmers are satis-
fied their HTTP logic is working, they

Figure 4. Virtual address space of the MirageOS Xen unikernel target.

IP header

4kB

12
0

T
B

64
-b

it
vi

rt
ua

l
ad

dr
es

s
sp

ac
e

12
8T

B

4kB

8x512
sectors

text and data

foreign
grants

reserved
by Xen

OCaml
minor heap

OCaml
major heap

4kB

TCP header

tx data

IP header

TCP header

rx data

3

2

1

0

Figure 5. Boot time.

8 128

Memory size (MiB)

T
im

e
(s

)

32 512
2048

16 256
64

1024
3072

  Linux PV+Apache
  Linux PV
 M irage

practice

january 2014 | vol. 57 | no. 1 | communications of the acm 67

uses a small set of files (which would
normally require all the baggage of
block devices and a file system), Mira-
geOS can convert it into a static OCaml
module that satisfies the file-system
module signature, relieving it of the
need for an external storage depen-
dency. The entire MirageOS home page
(http://openmirage.org) is served in
this manner.

One (deliberate) consequence of
metaprogramming is that large blocks
of functionality may be entirely miss-
ing from the output binary. This makes
dynamic reconfiguration of the most
specialized targets impossible, and
a configuration change requires the
unikernel to be relinked. The lines of
active (that is, post-configuration) code
involved in a MirageOS Web server are
shown in Table 1, giving a sense of the
small amount of code involved in such
a recompilation.

Linking the Xen unikernel. In a
conventional OS, application source
code is first compiled into object files
via a native-code compiler and then
handed off to a linker that generates
an executable binary. After compila-
tion, a dynamic linker loads the exe-
cutable and any shared libraries into
a process with its own address space.
The process can then communicate
with the outside world by system
calls, mediated by the operating-sys-
tem kernel. Within the kernel, vari-
ous subsystems such as the network
stack or virtual memory system pro-
cess system calls and interacts with
the hardware.

In MirageOS, the OCaml compiler
receives the source code for an en-
tire kernel’s worth of code and links
it into a stand-alone native-code ob-
ject file. It is linked against a minimal
runtime that provides boot support
and the garbage collector. There is no
preemptive threading, and the kernel
is event driven via an I/O loop that
polls Xen devices.

The Xen unikernel compilation
derives its performance benefit from
the fact that the running kernel has a
single virtual address space, designed
to run only the OCaml runtime. The vir-
tual address space of the MirageOS Xen
unikernel target is shown in Figure 4.
Since all configuration information
is explicitly part of the compilation,
there is no longer a need for the usual

dynamic linking support that requires
executable mappings to be added after
the VM has booted.13

Benefits
Consider the life cycle of a traditional
application. First the source code is
compiled to a binary. Later, the binary
is loaded into memory and an OS pro-
cess is created to execute it. The first
thing the running process will do is
read its configuration file and special-
ize itself to the environment it finds
itself in. Many different applications
will run exactly the same binary, ob-
tained from the same binary package,
but with different configuration files.
These configuration files are effectively
additional program code, except they
are normally written in ad hoc languag-
es and interpreted at runtime rather
than compiled.

Deployment and management.
Configuration is a considerable over-
head in managing the deployment of
a large cloud-hosted service. The tra-
ditional split between the compiled
(code) and interpreted (configuration)
is unnecessary with unikernel com-
pilation. Application configuration is
code—perhaps as an embedded do-
main-specific language—and the com-
piler can analyze and optimize across
the whole unikernel.

In MirageOS, rather than treating
the database, Web server, and so on,
as independent applications that must
be connected by configuration files,
they are treated as libraries within a
single application, allowing the ap-
plication developer to configure them
using either simple library calls for
dynamic parameters or metaprogram-
ming tools for static parameters. This
has the useful effect of making con-
figuration decisions explicit and pro-
grammable in a host language rather
than manipulating many ad hoc text
files and thus benefiting from static-
analysis tools and the compiler’s type
checker. The result is a big reduction in
the effort needed to configure complex
multiservice application VMs.

One downside to a unikernel is the
burden it places on the cloud orchestra-
tion layers because of the need to sched-
ule many more VMs with greater churn
(since every reconfiguration requires
the VM to be redeployed). The popular
orchestration implementations have

One downside
to a unikernel
is the burden
it places on
the cloud
orchestration
layers because
of the need
to schedule
many more
VMs with
greater churn.

practice

68 communications of the acm | january 2014 | vol. 57 | no. 1

down Linux kernel and MirageOS are
similar, but the inefficiency creeps into
Linux as soon as it has to initialize the
user-space applications. The MirageOS
unikernel is ready to serve traffic as
soon as it boots.

The MLton20 compiler pioneered
WPO (whole program optimization),
where an application and all of its li-
braries are optimized together. In the
libOS world, a whole program is ac-
tually a whole operating system: this
technique can now optimize all the way
from application-level code to low-level
device drivers. Traditional systems es-
chew WPO in favor of dynamic link-
ing, sometimes in combination with
JIT (just-in-time) compiling, where a
program is analyzed dynamically, and
optimized code is generated on the fly.
Whole-program, compile-time optimi-
zation is more appropriate for cloud
applications that care about resource
efficiency and reducing their attack
surface. Other research elaborates on
the security benefits.13

An interesting recent trend is a
move toward operating-system con-
tainers in which each container is man-
aged by the same operating-system
kernel but with an isolated file system,
network, and process group. Contain-
ers are quick to create since there is no
need to boot a new kernel, and they are
fully compatible with existing kernel
interfaces. However, these gains are
made at the cost of reduced security
and isolation; unikernels share only
the minimal hypervisor services via a
small API, which is easy to understand
and audit. Unikernels demonstrate
that layering language runtimes onto
a hypervisor is a viable alternative to
lightweight containers.

A new frontier of portability. The
structure of MirageOS libraries shown
in Figure 3 explicitly encodes what the
library needs from its execution envi-
ronment. While this has convention-
ally meant a Posix-like kernel and user
space, it is now possible to compile OC-
aml into more foreign environments,
including FreeBSD kernel modules, Ja-
vaScript running in the browser, or (as
the Scala language does) directly tar-
geting the Java Virtual Machine (JVM).

Some care is still required for ex-
ecution properties that are not ab-
stractable in the OCaml type system.
For example, floating-point numbers

grown rather organically in recent years
and consist of many distributed compo-
nents that are not only difficult to man-
age, but also relatively high in latency
and resource consumption.

One of the first production uses for
MirageOS is to fix the cloud-manage-
ment stacks by evolving the OCaml
code within XenServer17 toward the
structured unikernel worldview. This
turns the monolithic management
layer into a more agile set of intercom-
municating VMs that can be sched-
uled and restarted independently.
MirageOS makes constructing these
single-purpose VMs easy: they are
first built and tested as regular Unix
applications before flipping a switch
and relinking against the Xen kernel
libraries (http://openmirage.org/blog/
xenstore-stub-domain). When they are
combined with Xen driver domains,3
they can dramatically increase the
security and robustness of the cloud-
management stack.

Resource efficiency and custom-
ization. The cloud is an environment
where all resource usage is metered

and rented. At the same time, mult-
itenant services suffer from variability
in load that encourages rapid scaling
of deployments—both up to meet cur-
rent demand and down to avoid wast-
ing money. In MirageOS, features that
are not used in a particular build are
not included, and whole-system op-
timization techniques can be used to
eliminate waste at compilation time
rather than deployment time. In the
most specialized mode, all configura-
tion files are statically evaluated, en-
abling extensive dead-code elimina-
tion at the cost of having to recompile
to reconfigure the service.

The small binary size of the uniker-
nels (on the order of hundreds of ki-
lobytes in many cases) makes deploy-
ment to remote data centers across the
Internet much smoother. Boot time is
also easily less than a second, making
it feasible to boot a unikernel in re-
sponse to incoming network packets.

Figure 5 shows the comparison
between the boot time of a service in
MirageOS and a Linux/Apache distri-
bution. The boot time of a stripped-

Table 1. Approximate size of libraries used by a typical MirageOS unikernel running
a Web server.

Library C/kLOC OCaml/kLOC

Boot 18 0

OCaml runtime 20 0

threads 5 27

interdomain comms trace 1

network driver 0 1

TCP/IP trace 12

block driver 0 1

HTTP 0 11

Total 43 52

Table 2. Other unikernel implementations.

Unikernel Language Targets

Mirage13 OCaml Xen, kFreeBSD, POSIX, WWW/js

Drawbridge17 C Windows “picoprocess”

HalVM8 Haskell Xen

ErlangOnXen Erlang Xen

OSv2 C/Java Xen, KVM

GUK Java Xen

NetBSD “rump”9 C Xen, Linux kernel, POSIX

ClickOS14 C++ Xen

practice

january 2014 | vol. 57 | no. 1 | communications of the acm 69

are generally forbidden when running
as a kernel module; thus, a modified
compiler emits a type error if floating-
point code is used when compiling for
that hardware target.

Other third-party OCaml code of-
ten exhibits a similar structure, mak-
ing it much easier to work under Mi-
rageOS. For example, Arakoon (http://
arakoon.org) is a distributed key-value
store that implements an efficient
multi-Paxos consensus algorithm.
The source-code patch to compile it
under MirageOS touched just two files
and was restricted to adding a new
module definition that mapped the
Arakoon back-end storage to the Xen
block driver interface.

Unikernels in the Wild
MirageOS is certainly not the only
unikernel that has emerged in the past
few years, although it is perhaps the
most extreme in terms of exploring
the clean-slate design space. Table 2
shows some of the other systems that
build unikernels. HalVM8 is the clos-
est to the MirageOS philosophy, but
it is based on the famously pure and
lazy Haskell language rather than the
strictly evaluated OCaml. On the other
end of the spectrum, OSv2 and rump
kernels9 provide a compatibility layer
for existing applications, and deem-
phasize the programming model im-
provements and type safety that guides
MirageOS. The Drawbridge project16
converts Windows into a libOS with
just a reported 16MB overhead per ap-
plication, but it exposes higher-level
interfaces than Xen (such as threads
and I/O streams) to gain this efficiency.

Ultimately, the public cloud should
support all these emerging projects as
first-class citizens just as Linux and
Windows are today. The Xen Project
aims to support a brave new world of
dust clouds: tiny one-shot VMs that
run on hypervisors with far greater
density than is currently possible and
that self-scale their resource needs by
constantly calling into the cloud fab-
ric. The libOS principles underlying
MirageOS mean it is not limited to
running on a hypervisor platform—
many of the libraries can be compiled
to multiscale environments,12 ranging
from ARM smartphones to bare-metal
kernel modules. To understand the
implications of this flexibility, we have

been exploring use cases ranging from
managing personal data4 and facilitat-
ing anonymous communication,15 to
building software-defined data-center
infrastructure.

Acknowledgments
The MirageOS effort has been a large
one and would not be possible with-
out the intellectual and financial
support of several sources. The core
team of Richard Mortier, Thomas
Gazagnaire, Jonatham Ludlam, Haris
Rotsos, Balraj Singh, and Vincent Ber-
nardoff have toiled to help us build
the clean-slate OCaml code, with con-
stant support and feedback from Jon
Crowcroft, Steven Hand, Ian Leslie,
Derek McAuley, Yaron Minsky, An-
drew Moore, Simon Moore, Alan My-
croft, Peter G. Neumann, and Robert
N.M. Watson. Space prevents us from
fully acknowledging all those who
contributed to this effort. We encour-
age readers to visit http://queue.acm.
org for our full list.

This work was primarily supported
by Horizon Digital Economy Research,
RCUK grant EP/G065802/1. A portion
was sponsored by DARPA (Defense Ad-
vanced Research Projects Agency) and
AFRL (Air Force Research Laboratory),
under contract FA8750-11-C-0249. The
views, opinions, and/or findings con-
tained in this report are those of the au-
thors and should not be interpreted as
representing the official views or poli-
cies, either expressed or implied, of
DARPA or the Department of Defense.

MirageOS is available freely at
http://openmirage.org. We welcome
feedback, patches, and improbable
stunts using it.	

 Related articles
 on queue.acm.org

Self-Healing in Modern Operating Systems

Michael W. Shapiro
http://queue.acm.org/detail.cfm?id=1039537

Erlang for Concurrent Programming

Jim Larson
http://queue.acm.org/detail.cfm?id=1454463

Passing a Language through
the Eye of a Needle
Roberto Ierusalimschy, Luiz Henrique de
Figueiredo and Waldemar Celes
http://queue.acm.org/detail.cfm?id=1983083

OCaml for the Masses

Yaron Minsky
http://queue.acm.org/detail.cfm?id=2038036

References
1.	B arham, P. et al. Xen and the art of virtualization. In

Proceedings of the 19th ACM Symposium on Operating
Systems Principles (2003), 164–177.

2.	C loudius Systems. OSv; https://github.com/cloudius-
systems/osv.

3.	C olp, P. et al. A. Breaking up is hard to do: Security
and functionality in a commodity hypervisor. In
Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (2011), 189–202.

4.	C rowcroft, J., Madhavapeddy, A., Schwarzkopf,
M., Hong, T. and Mortier, R. Unclouded vision. In
Proceedings of the International Conference on
Distributed Computing and Networking, 29–40.

5.	 Eisenstadt, M. My hairiest bug war stories. Commun.
ACM 40, 4 (Apr. 1997), 30–37.

6.	 Engler, D. R., Kaashoek, M. F. and O’Toole, Jr.,
J. Exokernel: An operating system architecture
for application-level resource management. In
Proceedings of the 15th ACM Symposium on Operating
Systems Principles, (1995), 251–266.

7.	 Eriksen, M. Your server as a function. In Proceedings
of the 7th Workshop on Programming Languages and
Operating Systems, (2013), 5:1–5:7.

8.	G alois Inc. The Haskell Lightweight Virtual Machine
(HaLVM) source archive; https://github.com/GaloisInc/
HaLVM.

9.	K antee, A. Flexible operating system internals: The
design and implementation of the anykernel and
rump kernels. Ph.D. thesis, Aalto University, Espoo,
Finland, 2012.

10.	 Leslie, I.M. et al. The design and implementation of an
operating system to support distributed multimedia
applications. IEEE Journal of Selected Areas in
Communications 14, 7 (1996), 1280–1297.

11.	M adhavapeddy, A., Ho, A., Deegan, T., Scott, D. and
Sohan, R. Melange: Creating a “functional” Internet.
SIGOPS Operating Systems Review 41, 3 (2007),
101–114.

12.	M adhavapeddy, A., Mortier, R., Crowcroft, J. and Hand,
S. Multiscale not multicore: Efficient heterogeneous
cloud computing. In Proceedings of ACM-BCS
Visions of Computer Science. Electronic Workshops in
Computing, (Edinburgh, U.K., 2010).

13.	M adhavapeddy, A. et al. Unikernels: Library operating
systems for the cloud. In Proceedings of the 18th
International Conference on Architectural Support
for Programming Languages and Operating Systems,
(2013), 461–472.

14.	M insky, Y. OCaml for the masses. Commun. ACM 54,
11 (Nov. 2011), 53–58.

15.	M ortier, R., Madhavapeddy, A., Hong, T., Murray, D.
and Schwarzkopf, M. Using dust clouds to enhance
anonymous communication. In Proceedings of the 18th
International Workshop on Security Protocols (2010).

16.	 Porter, D.E., Boyd-Wickizer, S., Howell, J., Olinsky, R.
and Hunt, G.C. Rethinking the library OS from the
top down. In Proceedings of the 16th International
Conference on Architectural Support for Programming
Languages and Operating Systems, (2011), 291–304.

17.	S cott, D., Sharp, R., Gazagnaire, T. and Madhavapeddy,
A. Using functional programming within an industrial
product group: perspectives and perceptions. In
Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming, (2010), 87–92.

18.	 Vinge, V. A Fire Upon the Deep. Tor Books, New York,
NY, 1992.

19.	 Watson, R.N.M. A decade of OS access-control
extensibility. Commun. ACM 56, 2 (Feb. 2013), 52–63.

20.	 Weeks, S. Whole-program compilation in MLton. In
Proceedings of the 2006 Workshop on ML.

Anil Madhavapeddy is a Senior Research Fellow at the
University of Cambridge, based in the Systems Research
Group. He was on the original team that developed the
Xen hypervisor and XenServer management toolstack
written in OCaml. XenServer has been deployed on
millions of hosts and drives critical infrastructure for many
Fortune 500 companies.

Dave Scott is a Principal Architect at Citrix Systems
where he works on the XenServer virtualization platform.
His focus is on improving XenServer reliability and
performance through exploiting advances in open-source
software and high-level languages.

© 2014 ACM 0001-0782/14/01 $15.00

