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Cloud computing has been pioneering the business 
of renting computing resources in large data centers to 
multiple (and possibly competing) tenants. The basic 
enabling technology for the cloud is operating-system 
virtualization such as Xen1 or VMWare, which allows 
customers to multiplex virtual machines (VMs) on a 

shared cluster of physical machines. 
Each VM presents as a self-contained 
computer, booting a standard operating-
system kernel and running unmodified 
applications just as if it were executing 
on a physical machine.

A key driver to the growth of cloud 
computing in the early days was server 
consolidation. Existing applications 
were often installed on physical hosts 
that were individually underutilized, 
and virtualization made it feasible to 
pack them onto fewer hosts without 
requiring any modifications or code 
recompilation. VMs are also managed 
via software APIs rather than physical 

actions. They can be centrally backed 
up and migrated across different phys-
ical hosts without interrupting service. 
Today commercial providers such as 
Amazon and Rackspace maintain vast 
data centers that host millions of VMs. 
These cloud providers relieve their 
customers of the burden of managing 
data centers and achieve economies of 
scale, thereby lowering costs.

While operating-system virtual-
ization is undeniably useful, it adds 
yet another layer to an already highly 
layered software stack now including: 
support for old physical protocols (for 
example, disk standards developed 
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modular components that are flexible, 
secure, and reusable in the style of a 
library operating system. What would 
the benefits be if all the software lay-
ers in an appliance could be compiled 
within the same high-level language 
framework instead of dynamically as-
sembling them on every boot? First, 
some background information about 
appliances, library operating systems, 
and type-safe programming languages.

The shift to single-purpose appli-
ances. A typical VM running on the 
cloud today contains a full operating-
system image: a kernel such as Linux or 
Windows hosting a primary application 
running in user space (for example, 
MySQL or Apache), along with second-
ary services (for example, syslog or NTP) 
running concurrently. The generic soft-
ware within each VM is initialized every 
time the VM is booted by reading con-
figuration files from storage. 

Despite containing many flexible 
layers of software, most deployed VMs 
ultimately perform a single function 
such as acting as a database or Web 
server. The shift toward single-purpose 
VMs is a reflection of just how easy it 
has become to deploy a new virtual 
computer on demand. Even a decade 
ago, it would have taken more time and 
money to deploy a single (physical) ma-
chine instance, so the single machine 
would need to run multiple end-user 
applications and therefore be carefully 
configured to isolate the constituent 
services and users from each other.

The software layers that form a VM 
have not yet caught up to this trend, 
and this represents a real opportunity 
for optimization—not only in terms 
of performance by adapting the appli-
ance to its task, but also for improv-
ing security by eliminating redundant 
functionality and reducing the attack 
surface of services running on the pub-
lic cloud. Doing so statically is a chal-
lenge, however, because of the struc-
ture of existing operating systems.

Limitations of current operating 
systems. The modern hypervisor pro-
vides a resource abstraction that can 
be scaled dynamically—both verti-
cally by adding memory and cores, 
and horizontally by spawning more 
VMs. Many applications and operating 
systems cannot fully utilize this capa-
bility since they were designed before 
modern hypervisors came about (and 

in the 1980s such as IDE); irrelevant 
optimizations (for example, disk el-
evator algorithms on SSD drives); 
backward-compatible interfaces (for 
example, Posix); user-space processes 
and threads (in addition to VMs on a 
hypervisor); and managed-code run-
times (for example, OCaml, .NET, or 
Java). All of these layers sit beneath the 
application code. Are we really doomed 
to adding new layers of indirection 
and abstraction every few years, leav-
ing future generations of program-
mers to become virtual archaeologists 
as they dig through hundreds of layers 
of software emulation to debug even 
the simplest applications?5,18

This problem has received a lot 
of thought at the University of Cam-
bridge, both at the Computer Labora-
tory (where the Xen hypervisor originat-
ed in 2003) and within the Xen Project 
(custodian of the hypervisor that now 
powers the public cloud via companies 
such as Amazon and Rackspace). The 
solution—dubbed MirageOS—has its 
ideas rooted in research concepts that 
have been around for decades but are 
only now viable to deploy at scale since 
the availability of cloud-computing re-
sources has become more widespread.

The goal of MirageOS is to restruc-
ture entire VMs—including all ker-
nel and user-space code—into more 

Figure 1. Software layers and a stand-alone kernel compilation.
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http

device 
drivers

algorithms

application
source

SAT 
solver

service 
monitor

binary
repository

dns
dhcp

OCaml code 
repositories

config 
tree

compiler

full 
source

dependency
analysis

module
application

http

openstack

Branch-consistent
source

Branch-consistent
binaries

Compute

Cloud

whole program
optimization

static type 
checking

protocols

resolve
dependencies

git

git

xen
unikernel
outputs

Programmer

Compiler
config 
files

linker



practice

january 2014  |   vol.  57  |   no.  1   |   communications of the acm     63

the physical analogues such as mem-
ory hotplug were never ubiquitous in 
commodity hardware). Often, exter-
nal application-level load balancers 
are added to traditional applications 
running in VMs in order to make the 
service respond elastically by spawn-
ing new VMs when load increases. 
Traditional systems, however, are not 
optimized for size or boot time (Win-
dows might apply a number of patches 
at boot time, for example), so the load 
balancer must compensate by keep-
ing idle VMs around to deal with load 
spikes, wasting resources and money.

Why couldn’t these problems with 
operating systems simply be fixed? 
Modern operating systems are in-
tended to remain resolutely general 
purpose to solve problems for a wide 
audience. For example, Linux runs on 
an incredibly diverse set of platforms, 
from low-power mobile devices to 
high-end servers powering vast data 
centers. Compromising this flexibility 
simply to help one class of users im-
prove application performance would 
not be acceptable.

On the other hand, a specialized 
server appliance no longer requires 
an OS to act as a resource multiplexer 
since the hypervisor can do this at a 
lower level. One obvious problem with 
this approach is that most existing 
code presumes the existence of large 
but rather calcified interfaces such as 
POSIX or the Win32 API. Another po-
tential problem is that conventional 
operating systems provide services 
such as a TCP/IP stack for communica-
tion and a file-system interface for stor-
ing persistent data: in our brave new 
world, where would these come from?

The MirageOS architecture—
dubbed unikernels—is outlined in Fig-
ure 1. Unikernels are specialized OS 
kernels that are written in a high-level 
language and act as individual soft-
ware components. A full application 
(or appliance) consists of a set of run-
ning unikernels working together as a 
distributed system. MirageOS is based 
on the OCaml (http://ocaml.org) lan-
guage and emits unikernels that run 
on the Xen hypervisor. To explain how 
it works, let’s look at a radical operat-
ing-system architecture from the 1990s 
that was clearly ahead of its time.

Library operating system. This is not 
the first time people have asked these 

existential questions about operating 
systems. Several research groups have 
proposed operating-system designs 
based on an architecture known as a 
library operating system (or libOS). The 
first such systems were Exokernel6 and 
Nemesis10 in the late 1990s. In a libOS, 
protection boundaries are pushed to 
the lowest hardware layers, resulting 
in: a set of libraries that implement 
mechanisms, such as those needed to 
drive hardware or talk network proto-
cols; and a set of policies that enforce 
access control and isolation in the ap-
plication layer.

The libOS architecture has several 
advantages over more conventional 
designs. For applications where per-
formance—and especially predictable 
performance—is required, a libOS 
wins by allowing applications to ac-
cess hardware resources directly with-
out having to make repeated privilege 
transitions to move data between user 
space and kernel space. The libOS 
does not have a central networking 
service into which both high-priority 
network packets (such as those from a 
videoconference call) and low-priority 
packets (such as from a background 
file download) are forced to mix and 
interfere. Instead, libOS applications 
have entirely separate queues, and 
packets mix together only when they 
arrive at the network device.

The libOS architecture has two big 
drawbacks. First, running multiple 
applications side by side with strong 
resource isolation is tricky (although 
Nemesis did an admirable job of min-
imizing crosstalk between interactive 
applications). Second, device drivers 
must be rewritten to fit the new mod-
el. The fast-moving world of commod-
ity PC hardware meant that, no mat-
ter how many graduate students were 
tasked to write drivers, any research 
libOS prototype was doomed to be-
come obsolete in a few short years. 
This approach worked only in the  
real-time operating-system space (for 
example, VxWorks) where hardware 
support is narrower. 

Happily, OS virtualization over-
comes these drawbacks on commod-
ity hardware. A modern hypervisor 
provides VMs with CPU time and 
strongly isolated virtual devices for 
networking, block storage, USB, and 
PCI bridges. A libOS running as a VM 

The goal of 
MirageOS is to 
restructure entire 
VMs—including  
all kernel and  
user-space code—
into more modular 
components that 
are flexible, secure, 
and reusable in  
the style of a library 
operating system. 
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MirageOS aims to unify these di-
verse interfaces—both kernel and ap-
plication user spaces—into a single 
high-level language framework. Some 
of the benefits of modern program-
ming languages include:

˲˲ Static type checking. Compilers can 
classify program variables and func-
tions into types and reject code where 
a variable of one type is operated on 
as if it were a different type. Static 
type checking catches these errors at 
compile time rather than runtime and 
provides a flexible way for a systems 
programmer to protect different parts 
of a program from each other without 
depending solely on hardware mecha-
nisms such as virtual memory pag-
ing. The most obvious benefit of type 
checking is the resulting lack of memo-
ry errors such as buffer or integer over-
flows, which are still prevalent in the 
CERT (Computer Emergency Readi-
ness Team) vulnerability database. A 
more advanced use is capability-style 
access control,19 which can be entirely 
enforced in a static type system such as 
ML’s, as long as the code all runs with-
in the same language runtime.

˲˲ Automatic memory management. 
Runtime systems relieve programmers 
of the burden of allocating and freeing 
memory, while still permitting manual 
management of buffers (for example, 
for efficient I/O). Modern garbage col-
lectors are also designed to minimize 
application interruptions via incre-
mental and generational collection, 
thus permitting their use in high-per-
formance systems construction.7,11

˲˲ Modules. When the code base 
grows, modules partition it into logical 
components with well-defined inter-
faces gluing them together. Modules 
help software development scale as 
internal implementation details can 
be abstracted and the scope of a single 
source-code change can be restricted. 
Some module systems, such as those 
found in OCaml and Standard ML, are 
statically resolved at compilation time 
and are largely free of runtime costs. 
The goal is to harness these module 
systems to build whole systems, cross-
ing traditional kernel and user-space 
boundaries in one program.

˲˲ Metaprogramming. If the runtime 
configuration of a system is partially 
understood at compile time, then a 
compiler can optimize the program 

needs to implement only drivers for 
these virtual hardware devices and 
can depend on the hypervisor to drive 
the real physical hardware. Isolation 
between libOS applications can be 
achieved at low cost simply by using 
the hypervisor to spawn a fresh VM for 
each distinct application, leaving each 
VM free to be extremely specialized to 
its particular purpose. The hypervisor 
layer imposes a much simpler, less 
fine-grained policy than a convention-
al operating system, since it just pro-
vides a low-level interface consisting 
of virtual CPUs and memory pages, 
rather than the process and file-ori-
ented architecture found in conven-
tional operating systems.

Although OS virtualization has 
made the libOS possible without 
needing an army of device-driver writ-
ers, protocol libraries are still needed 
to replace the services of a traditional 
operating system. Modern kernels 
are  written in C, which excels at low-
level programs such as device drivers, 
but lacks the abstraction facilities of 
higher-level languages and demands 
careful manual tracking of resources 
such as memory buffers. As a result, 
many applications contain memory-
handling bugs, which often manifest 
as serious security vulnerabilities. Re-
searchers have done an admirable job 
of porting both Windows and Linux to 
a libOS model,16 but for us this provid-
ed the perfect excuse to explore a less 
backward-compatible but more natu-
rally integrated high-level language 
model. Figure 2 shows the logical work-
flow in MirageOS. Precise dependency 
tracking from source code (both local 
and global libraries) and configuration 
files lets the full provenance of the de-
ployed kernel binaries be recorded in 
immutable data stores, sufficient to 
precisely recompile it on demand.

Stronger programming abstractions. 
High-level languages are steadily gain-
ing ground in general application de-
velopment and are increasingly used 
to glue components together via or-
chestration frameworks (for example, 
Puppet and Chef). Unfortunately, all 
this logic is typically scattered across 
software components and is written 
in several languages. As a result, it is 
difficult to reason statically about the 
whole system’s behavior just by analyz-
ing the source code.

Although OS 
virtualization has 
made the libOS 
possible without 
needing an army 
of device-driver 
writers, protocol 
libraries are still 
needed to replace 
the services  
of a traditional 
operating system.



practice

january 2014  |   vol.  57  |   no.  1   |   communications of the acm     65

much more than it would normally 
be able to. Without knowledge of the 
runtime configuration, the compiler’s 
hands are tied, as the output program 
must remain completely generic, just 
in case. The goal here is to unify config-
uration and code at compilation time 
and eliminate waste before deploying 
to the public cloud.

Together, these features signifi-
cantly simplify the construction of 
large-scale systems: managed memory 
eliminates many resource leaks, type 
inference results in more succinct 
source code, static type checking veri-
fies that code matches some abstrac-
tion criteria at compilation time rather 
than execution time, and module sys-
tems allow the manipulation of this 
code at the scales demanded by a full 
OS and application stack.

A Functional Prototype In OCaml
We started building the MirageOS 
prototype in 2008 with the intention 
of understanding how far we could 
unify the programming models un-
derlying library operating systems 
and cloud-service deployment. The 
first design decision was to adopt the 
principles behind functional program-
ming to construct the prototype. Func-
tional programming has an empha-
sis on supporting abstractions that 
make it easier to track mutability in 
programs, and previous research has 
shown that this need not come at the 
price of performance.11 

The challenge was to identify the 
correct modular abstractions to sup-
port the expression of an entire oper-
ating system and application software 
stack in a single manageable struc-
ture. MirageOS has since grown into a 
mature set of almost 100 open-source 
libraries that implement a wide array 
of functionality, and it is starting to be 
integrated into commercial products 
such as Citrix XenServer.17

Figure 2 illustrates MirageOS’s de-
sign. It grants the compiler a much 
broader view of source-code dependen-
cies than a conventional cloud deploy-
ment cycle:

˲˲ All source-code dependencies of 
the input application are explicitly 
tracked, including all the libraries re-
quired to implement kernel function-
ality. MirageOS includes a build system 
that internally uses a SAT solver (us-

ing the OPAM package manager, with 
solvers from the Mancoosi project) to 
search for compatible module imple-
mentations from a published online 
package set. Any mismatches in inter-
faces are caught at compile time be-
cause of OCaml’s static type checking.

˲˲ The compiler can then output a 
full stand-alone kernel instead of just 
a Unix executable. These unikernels 
are single-purpose libOS VMs that 
perform only the task defined in their 
application source and configuration 
files, and they depend on the hypervi-
sor to provide resource multiplexing 
and isolation. Even the bootloader, 
which has to set up the virtual mem-
ory page tables and initialize the lan-
guage runtime, is written as a simple 
library. Each application links to the 
specific set of libraries it needs and 
can glue them together in applica-
tion-specific ways.

˲˲ The specialized unikernels are 
deployed on the public cloud. They 
have a significantly smaller attack sur-
face than the conventional virtualized 
equivalents and are more resource effi-
cient in terms of boot time, binary size, 
and runtime performance.

Why OCaml? OCaml is the sole 
base language for MirageOS for a few 

key reasons. It is a full-fledged sys-
tems programming language with 
a flexible programming model that 
supports functional, imperative, and 
object-oriented styles within a single, 
ML-inspired type system. It also fea-
tures a portable single-threaded run-
time that makes it ideal for porting 
to restricted environments such as 
a barebones Xen VM. The compiler 
heavily emphasizes static type check-
ing, and the resulting binaries are 
fast native code with minimal run-
time type information. Principal type 
inference allows type annotations to 
be safely omitted, and the module 
system is among the most powerful 
in a general-purpose programming 
language in terms of permitting flex-
ible and safe code reuse and refactor-
ing. Finally, there were several exam-
ples of large-scale uses of OCaml in 
industry14 and within Xen itself,17 and 
the positive results were encouraging 
before embarking on the large mul-
tiyear project that MirageOS turned 
out to be.

Modular operating-system librar-
ies. OCaml supports the definition 
of module signatures (a collection of 
data-type and function declarations) 
that abstract the implementation of 

Figure 3. A partial module graph for a static Web server.
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can recompile to switch away from us-
ing Unix sockets to the OCaml TCP/
IP stack shown by MirTCP in Figure 
3. This still requires a Unix kernel 
but only as a shell to deliver Ether-
net frames to the Web-server process 
(which now incorporates an OCaml 
TCP/IP stack as part of the applica-
tion). The last compilation strategy 
drops the dependency on Unix entire-
ly and recompiles the MirNet mod-
ule to link directly to a Xen network 
driver, which in turn pulls in all the 
dependencies it needs to boot on Xen. 
This progressive recompilation is key 
to the usability of MirageOS, since we 
can evolve from the tried-and-tested 
Linux or FreeBSD functionality gradu-
ally but still end up with specialized 
unikernels that can be deployed on 
the public cloud. This modular op-
erating-system structure has led to 
a number of other back ends being 
implemented in a similar vein to Xen. 
MirageOS now has experimental back 
ends that implement a simulator in 
NS3 (for large-scale functional test-
ing), a FreeBSD kernel module back 
end, and even a JavaScript target by 
using the js _ of _ ocaml compiler. 
A natural consequence of this modu-
larity is that it is easier to write por-
table code that defines exactly what it 
needs from a target platform, which is 
increasingly difficult on modern oper-
ating systems with the lack of a mod-
ern equivalent of Posix (which has led 
Linux, FreeBSD, Mac OS X, and Win-
dows to have numerous incompatible 
APIs for high-performance services).

Configuration and state. Libraries 
in MirageOS are designed in as func-
tional a style as possible: they are re-
entrant with explicit state handles, 
which are in turn serializable so that 
they can be reconstructed explicitly. 
An application consists of a set of li-
braries plus some configuration code, 
all linked together. The configuration 
is structured as a tree roughly like a 
file system, with subdirectories be-
ing parsed by each library to initialize 
their own values (reminiscent of the 
Plan 9 operating system). All of this is 
connected by metaprogramming—an 
OCaml program generates more OC-
aml code that is compiled until the 
desired target is reached.

The metaprogramming extends 
into storage as well. If an application 

module structures (definitions of con-
crete data types and functions). Mod-
ules can be parameterized over sig-
natures, creating functors that define 
operations across other data types. 
(For more information about OC-
aml modules, functors, and objects, 
see Real World OCaml, published by 
O’Reilly and available at https://real-
worldocaml.org.) We applied the OC-
aml module system to breaking the 
usually monolithic OS kernel func-
tionality into discrete units. This lets 
programmers build code that can be 
progressively specialized as it is be-
ing written, starting from a process 
in a familiar Unix environment and 
ending up with a specialized cloud 
unikernel running on Xen.

Consider a simple example. Fig-
ure 3 shows a partial module graph 
for a static Web server. Libraries are 
a module graph that abstract over 
operating-system functionality, and 
the OPAM package manager solves 
constraints over the target architec-
ture. The application MyHomePage 
depends on a HTTP signature that 
is provided by the Cohttp library. 
Developers just starting out want to 
explore their code interactively us-
ing a Unix-style development envi-
ronment. The Cohttp library needs 
a TCP implementation to satisfy its 
module signature, which can be pro-
vided by the UnixSocket library.

When the programmers are satis-
fied their HTTP logic is working, they 

Figure 4. Virtual address space of the MirageOS Xen unikernel target.
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uses a small set of files (which would 
normally require all the baggage of 
block devices and a file system), Mira-
geOS can convert it into a static OCaml 
module that satisfies the file-system 
module signature, relieving it of the 
need for an external storage depen-
dency. The entire MirageOS home page 
(http://openmirage.org) is served in 
this manner.

One (deliberate) consequence of 
metaprogramming is that large blocks 
of functionality may be entirely miss-
ing from the output binary. This makes 
dynamic reconfiguration of the most 
specialized targets impossible, and 
a configuration change requires the 
unikernel to be relinked. The lines of 
active (that is, post-configuration) code 
involved in a MirageOS Web server are 
shown in Table 1, giving a sense of the 
small amount of code involved in such 
a recompilation.

Linking the Xen unikernel. In a 
conventional OS, application source 
code is first compiled into object files 
via a native-code compiler and then 
handed off to a linker that generates 
an executable binary. After compila-
tion, a dynamic linker loads the exe-
cutable and any shared libraries into 
a process with its own address space. 
The process can then communicate 
with the outside world by system 
calls, mediated by the operating-sys-
tem kernel. Within the kernel, vari-
ous subsystems such as the network 
stack or virtual memory system pro-
cess system calls and interacts with 
the hardware.

In MirageOS, the OCaml compiler 
receives the source code for an en-
tire kernel’s worth of code and links 
it into a stand-alone native-code ob-
ject file. It is linked against a minimal 
runtime that provides boot support 
and the garbage collector. There is no 
preemptive threading, and the kernel 
is event driven via an I/O loop that 
polls Xen devices.

The Xen unikernel compilation 
derives its performance benefit from 
the fact that the running kernel has a 
single virtual address space, designed 
to run only the OCaml runtime. The vir-
tual address space of the MirageOS Xen 
unikernel target is shown in Figure 4. 
Since all configuration information 
is explicitly part of the compilation, 
there is no longer a need for the usual 

dynamic linking support that requires 
executable mappings to be added after 
the VM has booted.13

Benefits
Consider the life cycle of a traditional 
application. First the source code is 
compiled to a binary. Later, the binary 
is loaded into memory and an OS pro-
cess is created to execute it. The first 
thing the running process will do is 
read its configuration file and special-
ize itself to the environment it finds 
itself in. Many different applications 
will run exactly the same binary, ob-
tained from the same binary package, 
but with different configuration files. 
These configuration files are effectively 
additional program code, except they 
are normally written in ad hoc languag-
es and interpreted at runtime rather 
than compiled.

Deployment and management. 
Configuration is a considerable over-
head in managing the deployment of 
a large cloud-hosted service. The tra-
ditional split between the compiled 
(code) and interpreted (configuration) 
is unnecessary with unikernel com-
pilation. Application configuration is 
code—perhaps as an embedded do-
main-specific language—and the com-
piler can analyze and optimize across 
the whole unikernel. 

In MirageOS, rather than treating 
the database, Web server, and so on, 
as independent applications that must 
be connected by configuration files, 
they are treated as libraries within a 
single application, allowing the ap-
plication developer to configure them 
using either simple library calls for 
dynamic parameters or metaprogram-
ming tools for static parameters. This 
has the useful effect of making con-
figuration decisions explicit and pro-
grammable in a host language rather 
than manipulating many ad hoc text 
files and thus benefiting from static-
analysis tools and the compiler’s type 
checker. The result is a big reduction in 
the effort needed to configure complex 
multiservice application VMs.

One downside to a unikernel is the 
burden it places on the cloud orchestra-
tion layers because of the need to sched-
ule many more VMs with greater churn 
(since every reconfiguration requires 
the VM to be redeployed). The popular 
orchestration implementations have 

One downside  
to a unikernel  
is the burden  
it places on  
the cloud 
orchestration  
layers because  
of the need  
to schedule  
many more  
VMs with  
greater churn.
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down Linux kernel and MirageOS are 
similar, but the inefficiency creeps into 
Linux as soon as it has to initialize the 
user-space applications. The MirageOS 
unikernel is ready to serve traffic as 
soon as it boots.

The MLton20 compiler pioneered 
WPO (whole program optimization), 
where an application and all of its li-
braries are optimized together. In the 
libOS world, a whole program is ac-
tually a whole operating system: this 
technique can now optimize all the way 
from application-level code to low-level 
device drivers. Traditional systems es-
chew WPO in favor of dynamic link-
ing, sometimes in combination with 
JIT (just-in-time) compiling, where a 
program is analyzed dynamically, and 
optimized code is generated on the fly. 
Whole-program, compile-time optimi-
zation is more appropriate for cloud 
applications that care about resource 
efficiency and reducing their attack 
surface. Other research elaborates on 
the security benefits.13

An interesting recent trend is a 
move toward operating-system con-
tainers in which each container is man-
aged by the same operating-system 
kernel but with an isolated file system, 
network, and process group. Contain-
ers are quick to create since there is no 
need to boot a new kernel, and they are 
fully compatible with existing kernel 
interfaces. However, these gains are 
made at the cost of reduced security 
and isolation; unikernels share only 
the minimal hypervisor services via a 
small API, which is easy to understand 
and audit. Unikernels demonstrate 
that layering language runtimes onto 
a hypervisor is a viable alternative to 
lightweight containers.

A new frontier of portability. The 
structure of MirageOS libraries shown 
in Figure 3 explicitly encodes what the 
library needs from its execution envi-
ronment. While this has convention-
ally meant a Posix-like kernel and user 
space, it is now possible to compile OC-
aml into more foreign environments, 
including FreeBSD kernel modules, Ja-
vaScript running in the browser, or (as 
the Scala language does) directly tar-
geting the Java Virtual Machine (JVM). 

Some care is still required for ex-
ecution properties that are not ab-
stractable in the OCaml type system. 
For example, floating-point numbers 

grown rather organically in recent years 
and consist of many distributed compo-
nents that are not only difficult to man-
age, but also relatively high in latency 
and resource consumption. 

One of the first production uses for 
MirageOS is to fix the cloud-manage-
ment stacks by evolving the OCaml 
code within XenServer17 toward the 
structured unikernel worldview. This 
turns the monolithic management 
layer into a more agile set of intercom-
municating VMs that can be sched-
uled and restarted independently. 
MirageOS makes constructing these 
single-purpose VMs easy: they are 
first built and tested as regular Unix 
applications before flipping a switch 
and relinking against the Xen kernel 
libraries (http://openmirage.org/blog/
xenstore-stub-domain). When they are 
combined with Xen driver domains,3 
they can dramatically increase the 
security and robustness of the cloud-
management stack.

Resource efficiency and custom-
ization. The cloud is an environment 
where all resource usage is metered 

and rented. At the same time, mult-
itenant services suffer from variability 
in load that encourages rapid scaling 
of deployments—both up to meet cur-
rent demand and down to avoid wast-
ing money. In MirageOS, features that 
are not used in a particular build are 
not included, and whole-system op-
timization techniques can be used to 
eliminate waste at compilation time 
rather than deployment time. In the 
most specialized mode, all configura-
tion files are statically evaluated, en-
abling extensive dead-code elimina-
tion at the cost of having to recompile 
to reconfigure the service.

The small binary size of the uniker-
nels (on the order of hundreds of ki-
lobytes in many cases) makes deploy-
ment to remote data centers across the 
Internet much smoother. Boot time is 
also easily less than a second, making 
it feasible to boot a unikernel in re-
sponse to incoming network packets.

Figure 5 shows the comparison 
between the boot time of a service in 
MirageOS and a Linux/Apache distri-
bution. The boot time of a stripped-

Table 1. Approximate size of libraries used by a typical MirageOS unikernel running  
a Web server.

Library C/kLOC OCaml/kLOC

Boot 18 0

OCaml runtime 20 0

threads 5 27

interdomain comms trace 1

network driver 0 1

TCP/IP trace 12

block driver 0 1

HTTP 0 11

Total 43 52

Table 2. Other unikernel implementations.

Unikernel Language Targets

Mirage13 OCaml Xen, kFreeBSD, POSIX, WWW/js

Drawbridge17 C Windows “picoprocess”

HalVM8 Haskell Xen

ErlangOnXen Erlang Xen

OSv2 C/Java Xen, KVM

GUK Java Xen

NetBSD “rump”9 C Xen, Linux kernel, POSIX

ClickOS14 C++ Xen
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are generally forbidden when running 
as a kernel module; thus, a modified 
compiler emits a type error if floating-
point code is used when compiling for 
that hardware target.

Other third-party OCaml code of-
ten exhibits a similar structure, mak-
ing it much easier to work under Mi-
rageOS. For example, Arakoon (http://
arakoon.org) is a distributed key-value 
store that implements an efficient 
multi-Paxos consensus algorithm. 
The source-code patch to compile it 
under MirageOS touched just two files 
and was restricted to adding a new 
module definition that mapped the 
Arakoon back-end storage to the Xen 
block driver interface.

Unikernels in the Wild
MirageOS is certainly not the only 
unikernel that has emerged in the past 
few years, although it is perhaps the 
most extreme in terms of exploring 
the clean-slate design space. Table 2 
shows some of the other systems that 
build unikernels. HalVM8 is the clos-
est to the MirageOS philosophy, but 
it is based on the famously pure and 
lazy Haskell language rather than the 
strictly evaluated OCaml. On the other 
end of the spectrum, OSv2 and rump 
kernels9 provide a compatibility layer 
for existing applications, and deem-
phasize the programming model im-
provements and type safety that guides 
MirageOS. The Drawbridge project16 
converts Windows into a libOS with 
just a reported 16MB overhead per ap-
plication, but it exposes higher-level 
interfaces than Xen (such as threads 
and I/O streams) to gain this efficiency. 

Ultimately, the public cloud should 
support all these emerging projects as 
first-class citizens just as Linux and 
Windows are today. The Xen Project 
aims to support a brave new world of 
dust clouds: tiny one-shot VMs that 
run on hypervisors with far greater 
density than is currently possible and 
that self-scale their resource needs by 
constantly calling into the cloud fab-
ric. The libOS principles underlying 
MirageOS mean it is not limited to 
running on a hypervisor platform—
many of the libraries can be compiled 
to multiscale environments,12 ranging 
from ARM smartphones to bare-metal 
kernel modules. To understand the 
implications of this flexibility, we have 

been exploring use cases ranging from 
managing personal data4 and facilitat-
ing anonymous communication,15 to 
building software-defined data-center 
infrastructure.
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